Generic user I/O pins are bidirectional and can be configured as inputs, outputs, or both. This is in contrast to the dedicated power and test pins that are necessary for operation. There are as many potential user I/O pins as there are macrocells, although some CPLDs may be housed in packages that do not have enough physical pins to connect to all the chip's I/O sites. Such chips are intended for applications that are logic limited rather than pad limited.

Because the size of each logic block's AND array is fixed, the block has a fixed number of possible inputs. Vendor-supplied fitting software must determine which logical functions are placed into which blocks and how the switch matrix connects feedback paths and input pins to the appropriate block. The switch matrix does not grow linearly as more logic blocks are added. However, the impact of the switch matrix's growth is less than what would result with an ever expanding AND matrix. Each CPLD family provides a different number of switched input terms to each logic block.

The logic blocks share many characteristics with a GAL, as shown in Fig. 11.6, although additional flexibility is added in the form of product term sharing. Limiting the number of product terms in each logic block reduces device complexity and cost. Some vendors provide just five product terms per macrocell. To balance this limitation, which could impact a CPLD's usefulness, product term sharing resources enable one macrocell to borrow terms from neighboring macrocells. This borrowing usually comes at a small propagation delay penalty but provides necessary flexibility in handling complex Boolean expressions with many product terms. A logic block's macrocell contains a flip-flop and various configuration options such as polarity and clock control. As a result of their higher logic density, CPLDs contain multiple global clocks that individual macrocells can choose from, as well as the ability to generate clocks from the logic array itself.

Xilinx is a vendor of CPLD products and manufactures a family known as the XC9500. Logic blocks, or function blocks in Xilinx's terminology, each contain 18 macrocells, the outputs of which feed back into the switch matrix and drive I/O pins as well. XC9500 CPLDs contain multiples of 18 macrocells in densities from 36 to 288 macrocells. Each function block gets 54 input terms from the switch matrix. These input terms can be any combination of I/O pin inputs and feedback terms from other function blocks' macrocells.

Like a GAL, CPLD timing is very predictable because of the deterministic nature of the logic blocks' AND arrays and the input term switch matrix. Xilinx's XC9536XV-3 features a maximum pin-to-pin propagation delay of 3.5 ns and a t_{CO} of 2.5 ns.^{*} Internal logic can run as fast as 277 MHz with feedback delays included, although complex Boolean expressions likely reduce this f_{MAX} because of product term sharing and feedback delays through multiple macrocells.

CPLD fitting software is typically provided by the silicon vendor, because the underlying silicon architectures are proprietary and not disclosed in sufficient detail for a third party to design the necessary algorithms. These tools accept a netlist from a schematic tool or HDL synthesizer and automatically divide the logic across macrocells and logic blocks. The fitting process is more complex

FIGURE 11.6 CPLD logic block.

^{*} XC9536XV, DS053 (v2.2), Xilinx, August 2001, p. 4.

than for a GAL; not every term within the CPLD can be fed to each macrocell because of the segmented AND array structure. Product term sharing places restrictions on neighboring macrocells when Boolean expressions exceed the number of product terms directly connected to each macrocell. The fitting software first reduces the netlist to a set of Boolean expressions in the form that can be mapped into the CPLD and then juggles the assignment of macrocells to provide each with its required product terms. Desired operating frequency influences the placement of logic because of the delay penalties of sharing product terms across macrocells. These trade-offs occur at such a low level that human intervention is often impractical.

CPLDs have come to offer flexibility advantages beyond just logic implementation. As digital systems get more complex, logic IC supply voltages begin to proliferate. At one time, most systems ran on a single 5-V supply. This was followed by 3.3-V systems, and it is now common to find systems that operate at multiple voltages such as 3.3 V, 2.5 V, 1.8 V, and 1.5 V. CPLDs invariably find themselves designed into mixed-voltage environments for the purposes of interface conversion and bus management. To meet these needs, many CPLDs support more than one I/O voltage standard on the same chip at the same time. I/O pins are typically divided into banks, and each bank can be independently selected for a different I/O voltage.

Most CPLDs are relatively small in logic capacity because of the desire for very high-speed operation with deterministic timing and fitting characteristics at a reasonable cost. However, some CPLDs have been developed far beyond the size of typical CPLDs. Cypress Semiconductor's Delta39K200 contains 3,072 macrocells with several hundred kilobits of user-configurable RAM.^{*} The architecture is built around clusters of 128 macrocell logic groups, each of which is similar in nature to a conventional CPLD. In a similar way that CPLDs add an additional hierarchical connectivity layer on top of multiple GAL-type logic blocks, Cypress has added a layer on top of multiple CPLD-type blocks. Such large CPLDs may have substantial benefits for certain applications. Beyond several hundred macrocells, however, engineers have tended to use larger and more scalable FPGA technologies.

11.4 FPGAS

CPLDs are well suited to applications involving control logic, basic state machines, and small groups of read/write registers. These control path applications typically require a small number of flops. Once a task requires many hundreds or thousands of flops, CPLDs rapidly become impractical to use. Complex applications that manipulate and parse streams of data often require large quantities of flops to serve as pipeline registers, temporary data storage registers, wide counters, and large state machine vectors. Integrated memory blocks are critical to applications that require multiple FIFOs and data storage buffers. *Field programmable gate arrays* (FPGAs) directly address these data path applications.

FPGAs are available in many permutations with varying feature sets. However, their common defining attribute is a fine-grained architecture consisting of an array of small logic cells, each consisting of a flop, a small lookup table (LUT), and some supporting logic to accelerate common functions such as multiplexing and arithmetic carry terms for adders and counters. Boolean expressions are evaluated by the LUTs, which are usually implemented as small SRAM arrays. Any function of four variables, for example, can be implemented in a 16×1 SRAM when the four variables serve as the index into the memory. There are no AND/OR arrays as in a CPLD or GAL. All Boolean functions

^{*} Delta39K ISR CPLD Family, Document #38-03039 Rev. *.C, Cypress Semiconductor, December 2001, p. 1.